矩阵的行列式

奇异矩阵

奇异矩阵是线性代数的概念,就是对应的行列式等于0的矩阵。

奇异矩阵的判断方法:首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。 然后,再看此方阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。 同时,由|A|≠0可知矩阵A可逆,这样可以得出另外一个重要结论:可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。

非奇异矩阵

n 阶方阵 A 是非奇异矩阵的充要条件是 A 可逆,即可逆方阵就是非奇异矩阵。

单位矩阵

在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,这种矩阵被称为单位矩阵。它是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为1。除此以外全都为0。

逆矩阵

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
A的逆矩阵记作A-1。

矩阵转置

设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)
定义A的转置为这样一个n×m阶矩阵B,满足B=a(j,i),即 b (i,j)=a (j,i)(B的第i行第j列元素是A的第j行第i列元素),记A’=B。(有些书记为A^T,这里T为A的上标)